VLB Suche

Suche in den Daten des Verzeichnisses lieferbarer Bücher (VLB)

Drucken

Suchergebnisse

Produktdetails

Design Patterns für Machine Learning

Autor
Valliappa Lakshmanan, Sara Robinson, Michael Munn, Übersetzt von Frank Langenau

Design Patterns für Machine Learning

Untertitel
Entwurfsmuster für Datenaufbereitung, Modellbildung und MLOps
Beschreibung

Bewährte Praxislösungen für komplexe Machine-Learning-Aufgaben Behandelt alle Phasen der ML-Produktpipeline Klar strukturierter Aufbau: Konzepte und Zusammenhänge erschließen sich dadurch schnell Fokus auf TensorFlow, aber auch übertragbar auf PyTorch-Projekte Die Design Patterns in diesem Buch zeigen praxiserprobte Methoden und Lösungen für wiederkehrende Aufgaben beim Machine Learning. Die Autoren, drei Machine-Learning-Experten bei Google, beschreiben bewährte Herangehensweisen, um Data Scientists und Data Engineers bei der Lösung gängiger Probleme im gesamten ML-Prozess zu unterstützen. Die Patterns bündeln die Erfahrungen von Hunderten von Experten und bieten einfache, zugängliche Best Practices.In diesem Buch finden Sie detaillierte Erläuterungen zu 30 Patterns für diese Themen: Daten- und Problemdarstellung, Operationalisierung, Wiederholbarkeit, Reproduzierbarkeit, Flexibilität, Erklärbarkeit und Fairness. Jedes Pattern enthält eine Beschreibung des Problems, eine Vielzahl möglicher Lösungen und Empfehlungen für die Auswahl der besten Technik für Ihre Situation.

Verlag
O'Reilly
ISBN/EAN
978-3-96010-597-8
Preis
44,90 EUR
Status
lieferbar